139 research outputs found

    Efficient Gauss Elimination for Near-Quadratic Matrices with One Short Random Block per Row, with Applications

    Get PDF
    In this paper we identify a new class of sparse near-quadratic random Boolean matrices that have full row rank over F_2 = {0,1} with high probability and can be transformed into echelon form in almost linear time by a simple version of Gauss elimination. The random matrix with dimensions n(1-epsilon) x n is generated as follows: In each row, identify a block of length L = O((log n)/epsilon) at a random position. The entries outside the block are 0, the entries inside the block are given by fair coin tosses. Sorting the rows according to the positions of the blocks transforms the matrix into a kind of band matrix, on which, as it turns out, Gauss elimination works very efficiently with high probability. For the proof, the effects of Gauss elimination are interpreted as a ("coin-flipping") variant of Robin Hood hashing, whose behaviour can be captured in terms of a simple Markov model from queuing theory. Bounds for expected construction time and high success probability follow from results in this area. They readily extend to larger finite fields in place of F_2. By employing hashing, this matrix family leads to a new implementation of a retrieval data structure, which represents an arbitrary function f: S -> {0,1} for some set S of m = (1-epsilon)n keys. It requires m/(1-epsilon) bits of space, construction takes O(m/epsilon^2) expected time on a word RAM, while queries take O(1/epsilon) time and access only one contiguous segment of O((log m)/epsilon) bits in the representation (O(1/epsilon) consecutive words on a word RAM). The method is readily implemented and highly practical, and it is competitive with state-of-the-art methods. In a more theoretical variant, which works only for unrealistically large S, we can even achieve construction time O(m/epsilon) and query time O(1), accessing O(1) contiguous memory words for a query. By well-established methods the retrieval data structure leads to efficient constructions of (static) perfect hash functions and (static) Bloom filters with almost optimal space and very local storage access patterns for queries

    Insertion Time of Random Walk Cuckoo Hashing below the Peeling Threshold

    Get PDF

    Early retirement and the influence on healthcare budgets and insurance premiums in a diabetes population

    Get PDF
    Stefan WalzerAnalytica International, Untere Herrenstrasse 25, 79539 Loerrach, GermanyObjectives: To contribute to current discussions about budget impact modeling, two different approaches for the impact of a new pharmaceutical product were analyzed: firstly considering the impact on annual healthcare expenditures only, and secondly additional inclusion of lost insurance premiums due to possible early retirement in patients with chronic diseases.Methods: The dynamic model calculates the budget impact from two different perspectives: (a) the impact on healthcare expenditures and (b) on expenditures as well as on health insurance revenues due to premiums. The latter approach could especially be useful for patients with chronic diseases who have higher probabilities of early retirement. Early retirement rates and indirect costs were derived from published data. Healthcare premiums were calculated based on an average premium and a mean income. Epidemiological input data were obtained from the literature. Time horizon was 10 years.Results: Results in terms of reimbursement decisions of the budget impact analysis varied depending on the assumptions made for the insurance premiums, costs, and early retirement rate. Sensitivity analyses revealed that in extreme cases the decision for accepting a new pharmaceutical product would probably be negative using approach (a), but positive using approach (b). Conclusions: Depending on the disease and population of interest in a budget impact analysis, not only the healthcare expenditures for a health insurance have to be considered but also the revenue side for an insurance due to retirement should be included.Keywords: decision analysis, budget impact, pharmacoeconomics, health economics, health insuranc

    Random hypergraphs for hashing-based data structures

    Get PDF
    This thesis concerns dictionaries and related data structures that rely on providing several random possibilities for storing each key. Imagine information on a set S of m = |S| keys should be stored in n memory locations, indexed by [n] = {1,
,n}. Each object x [ELEMENT OF] S is assigned a small set e(x) [SUBSET OF OR EQUAL TO] [n] of locations by a random hash function, independent of other objects. Information on x must then be stored in the locations from e(x) only. It is possible that too many objects compete for the same locations, in particular if the load c = m/n is high. Successfully storing all information may then be impossible. For most distributions of e(x), however, success or failure can be predicted very reliably, since the success probability is close to 1 for loads c less than a certain load threshold c^* and close to 0 for loads greater than this load threshold. We mainly consider two types of data structures: ‱ A cuckoo hash table is a dictionary data structure where each key x [ELEMENT OF] S is stored together with an associated value f(x) in one of the memory locations with an index from e(x). The distribution of e(x) is controlled by the hashing scheme. We analyse three known hashing schemes, and determine their exact load thresholds. The schemes are unaligned blocks, double hashing and a scheme for dynamically growing key sets. ‱ A retrieval data structure also stores a value f(x) for each x [ELEMENT OF] S. This time, the values stored in the memory locations from e(x) must satisfy a linear equation that characterises the value f(x). The resulting data structure is extremely compact, but unusual. It cannot answer questions of the form “is y [ELEMENT OF] S?”. Given a key y it returns a value z. If y [ELEMENT OF] S, then z = f(y) is guaranteed, otherwise z may be an arbitrary value. We consider two new hashing schemes, where the elements of e(x) are contained in one or two contiguous blocks. This yields good access times on a word RAM and high cache efficiency. An important question is whether these types of data structures can be constructed in linear time. The success probability of a natural linear time greedy algorithm exhibits, once again, threshold behaviour with respect to the load c. We identify a hashing scheme that leads to a particularly high threshold value in this regard. In the mathematical model, the memory locations [n] correspond to vertices, and the sets e(x) for x [ELEMENT OF] S correspond to hyperedges. Three properties of the resulting hypergraphs turn out to be important: peelability, solvability and orientability. Therefore, large parts of this thesis examine how hyperedge distribution and load affects the probabilities with which these properties hold and derive corresponding thresholds. Translated back into the world of data structures, we achieve low access times, high memory efficiency and low construction times. We complement and support the theoretical results by experiments.Diese Arbeit behandelt WörterbĂŒcher und verwandte Datenstrukturen, die darauf aufbauen, mehrere zufĂ€llige Möglichkeiten zur Speicherung jedes SchlĂŒssels vorzusehen. Man stelle sich vor, Information ĂŒber eine Menge S von m = |S| SchlĂŒsseln soll in n SpeicherplĂ€tzen abgelegt werden, die durch [n] = {1,
,n} indiziert sind. Jeder SchlĂŒssel x [ELEMENT OF] S bekommt eine kleine Menge e(x) [SUBSET OF OR EQUAL TO] [n] von SpeicherplĂ€tzen durch eine zufĂ€llige Hashfunktion unabhĂ€ngig von anderen SchlĂŒsseln zugewiesen. Die Information ĂŒber x darf nun ausschließlich in den PlĂ€tzen aus e(x) untergebracht werden. Es kann hierbei passieren, dass zu viele SchlĂŒssel um dieselben SpeicherplĂ€tze konkurrieren, insbesondere bei hoher Auslastung c = m/n. Eine erfolgreiche Speicherung der Gesamtinformation ist dann eventuell unmöglich. FĂŒr die meisten Verteilungen von e(x) lĂ€sst sich Erfolg oder Misserfolg allerdings sehr zuverlĂ€ssig vorhersagen, da fĂŒr Auslastung c unterhalb eines gewissen Auslastungsschwellwertes c* die Erfolgswahrscheinlichkeit nahezu 1 ist und fĂŒr c jenseits dieses Auslastungsschwellwertes nahezu 0 ist. HauptsĂ€chlich werden wir zwei Arten von Datenstrukturen betrachten: ‱ Eine Kuckucks-Hashtabelle ist eine Wörterbuchdatenstruktur, bei der jeder SchlĂŒssel x [ELEMENT OF] S zusammen mit einem assoziierten Wert f(x) in einem der SpeicherplĂ€tze mit Index aus e(x) gespeichert wird. Die Verteilung von e(x) wird hierbei vom Hashing-Schema festgelegt. Wir analysieren drei bekannte Hashing-Schemata und bestimmen erstmals deren exakte Auslastungsschwellwerte im obigen Sinne. Die Schemata sind unausgerichtete Blöcke, Doppel-Hashing sowie ein Schema fĂŒr dynamisch wachsenden SchlĂŒsselmengen. ‱ Auch eine Retrieval-Datenstruktur speichert einen Wert f(x) fĂŒr alle x [ELEMENT OF] S. Diesmal sollen die Werte in den SpeicherplĂ€tzen aus e(x) eine lineare Gleichung erfĂŒllen, die den Wert f(x) charakterisiert. Die entstehende Datenstruktur ist extrem platzsparend, aber ungewöhnlich: Sie ist ungeeignet um Fragen der Form „ist y [ELEMENT OF] S?“ zu beantworten. Bei Anfrage eines SchlĂŒssels y wird ein Ergebnis z zurĂŒckgegeben. Falls y [ELEMENT OF] S ist, so ist z = f(y) garantiert, andernfalls darf z ein beliebiger Wert sein. Wir betrachten zwei neue Hashing-Schemata, bei denen die Elemente von e(x) in einem oder in zwei zusammenhĂ€ngenden Blöcken liegen. So werden gute Zugriffszeiten auf Word-RAMs und eine hohe Cache-Effizienz erzielt. Eine wichtige Frage ist, ob Datenstrukturen obiger Art in Linearzeit konstruiert werden können. Die Erfolgswahrscheinlichkeit eines naheliegenden Greedy-Algorithmus weist abermals ein Schwellwertverhalten in Bezug auf die Auslastung c auf. Wir identifizieren ein Hashing-Schema, das diesbezĂŒglich einen besonders hohen Schwellwert mit sich bringt. In der mathematischen Modellierung werden die Speicherpositionen [n] als Knoten und die Mengen e(x) fĂŒr x [ELEMENT OF] S als Hyperkanten aufgefasst. Drei Eigenschaften der entstehenden Hypergraphen stellen sich dann als zentral heraus: SchĂ€lbarkeit, Lösbarkeit und Orientierbarkeit. Weite Teile dieser Arbeit beschĂ€ftigen sich daher mit den Wahrscheinlichkeiten fĂŒr das Vorliegen dieser Eigenschaften abhĂ€ngig von Hashing Schema und Auslastung, sowie mit entsprechenden Schwellwerten. Eine RĂŒckĂŒbersetzung der Ergebnisse liefert dann Datenstrukturen mit geringen Anfragezeiten, hoher Speichereffizienz und geringen Konstruktionszeiten. Die theoretischen Überlegungen werden dabei durch experimentelle Ergebnisse ergĂ€nzt und gestĂŒtzt

    Cuckoo hashing with overlapping buckets

    Get PDF

    Load thresholds for cuckoo hashing with overlapping blocks

    Get PDF
    Dietzfelbinger and Weidling [DW07] proposed a natural variation of cuckoo hashing where each of cncn objects is assigned k=2k = 2 intervals of size ℓ\ell in a linear (or cyclic) hash table of size nn and both start points are chosen independently and uniformly at random. Each object must be placed into a table cell within its intervals, but each cell can only hold one object. Experiments suggested that this scheme outperforms the variant with blocks in which intervals are aligned at multiples of ℓ\ell. In particular, the load threshold is higher, i.e. the load cc that can be achieved with high probability. For instance, Lehman and Panigrahy [LP09] empirically observed the threshold for ℓ=2\ell = 2 to be around 96.5%96.5\% as compared to roughly 89.7%89.7\% using blocks. They managed to pin down the asymptotics of the thresholds for large ℓ\ell, but the precise values resisted rigorous analysis. We establish a method to determine these load thresholds for all ℓ≄2\ell \geq 2, and, in fact, for general k≄2k \geq 2. For instance, for k=ℓ=2k = \ell = 2 we get ≈96.4995%\approx 96.4995\%. The key tool we employ is an insightful and general theorem due to Leconte, Lelarge, and Massouli\'e [LLM13], which adapts methods from statistical physics to the world of hypergraph orientability. In effect, the orientability thresholds for our graph families are determined by belief propagation equations for certain graph limits. As a side note we provide experimental evidence suggesting that placements can be constructed in linear time with loads close to the threshold using an adapted version of an algorithm by Khosla [Kho13]

    A Sublinear Local Access Implementation for the Chinese Restaurant Process

    Get PDF

    Dense peelable random uniform hypergraphs

    Get PDF
    We describe a new family of k-uniform hypergraphs with independent random edges. The hypergraphs have a high probability of being peelable, i.e. to admit no sub-hypergraph of minimum degree 2, even when the edge density (number of edges over vertices) is close to 1. In our construction, the vertex set is partitioned into linearly arranged segments and each edge is incident to random vertices of k consecutive segments. Quite surprisingly, the linear geometry allows our graphs to be peeled "from the outside in". The density thresholds f_k for peelability of our hypergraphs (f_3 ~ 0.918, f_4 ~ 0.977, f_5 ~ 0.992, ...) are well beyond the corresponding thresholds (c_3 ~ 0.818, c_4 ~ 0.772, c_5 ~ 0.702, ...) of standard k-uniform random hypergraphs. To get a grip on f_k, we analyse an idealised peeling process on the random weak limit of our hypergraph family. The process can be described in terms of an operator on [0,1]^Z and f_k can be linked to thresholds relating to the operator. These thresholds are then tractable with numerical methods. Random hypergraphs underlie the construction of various data structures based on hashing, for instance invertible Bloom filters, perfect hash functions, retrieval data structures, error correcting codes and cuckoo hash tables, where inputs are mapped to edges using hash functions. Frequently, the data structures rely on peelability of the hypergraph or peelability allows for simple linear time algorithms. Memory efficiency is closely tied to edge density while worst and average case query times are tied to maximum and average edge size. To demonstrate the usefulness of our construction, we used our 3-uniform hypergraphs as a drop-in replacement for the standard 3-uniform hypergraphs in a retrieval data structure by Botelho et al. [Fabiano Cupertino Botelho et al., 2013]. This reduces memory usage from 1.23m bits to 1.12m bits (m being the input size) with almost no change in running time. Using k > 3 attains, at small sacrifices in running time, further improvements to memory usage

    Foundations for actively secure card-based cryptography

    Get PDF
    Card-based cryptography, as first proposed by den Boer [den Boer, 1989], enables secure multiparty computation using only a deck of playing cards. Many protocols as of yet come with an “honest-but-curious” disclaimer. However, modern cryptography aims to provide security also in the presence of active attackers that deviate from the protocol description. In the few places where authors argue for the active security of their protocols, this is done ad-hoc and restricted to the concrete operations needed, often using additional physical tools, such as envelopes or sliding cover boxes. This paper provides the first systematic approach to active security in card-based protocols. The main technical contribution concerns shuffling operations. A shuffle randomly permutes the cards according to a well-defined distribution but hides the chosen permutation from the players. We show how the large and natural class of uniform closed shuffles, which are shuffles that select a permutation uniformly at random from a permutation group, can be implemented using only a linear number of helping cards. This ensures that any protocol in the model of Mizuki and Shizuya [Mizuki and Shizuya, 2014] can be realized in an actively secure fashion, as long as it is secure in this abstract model and restricted to uniform closed shuffles. Uniform closed shuffles are already sufficient for securely computing any circuit [Mizuki and Sone, 2009]. In the process, we develop a more concrete model for card-based cryptographic protocols with two players, which we believe to be of independent interest
    • 

    corecore